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ABSTRACT 

In this paper the clasical Hausd~orff-Young theorem, which states that if 
f ~  Ln, 1 < p < 2, on the line and f is its Fourier transform, then lift[ q < Ilfll, 
where q- 1 + p- 1 = 1, is extended in two ways for certain Orlicz spa~s L ~. 
If L ® is based on (G,/z), (1) an arbitrary compact topological group with 
Haar measure, and (2) a locally compact abelian topological group and tt is 
again the Haar measure, then the above inequality is extended to these cases. 
Various other related results and remarks are also included. 

1. Introduction. I f  LP(R, #), p > 1, is the Lebesgue space on the line R with 
# as the Lebesgue measure, and i f f ~  LP(R,Iz) and f = Tf ,  the Fourier transform 
o f f ,  then the Hausdorff-Young theorem states that for all 1 < p < 2, f exists 
and moreover l[ f ll~ < [I: [I,, where p-1 + q-l= I and l[" lip is the norm in 
LP(R,p). This result is quickly proved from the Riesz convexity theorem using 
the facts that ll'll  ---- []fill and (the Plancherel formula) If:If2 = llfl12, it is 
known that T f i s  not defined for a l l f i n  LP(R,#) i f p  > 2. 

The purpose of this paper is to generalize this result with an enlargement of 
spaces for which the inequalities of Hausdorff-Young type hold. This is achieved 
by replacing the LP-spaces by the L°-spaces of Orlicz. In fact, simple examples 
can be constructed (cf.; e.g., [5], p. 29) to show that there exist Young's functions 

(hence L~-spaces) that grow faster than I xl but not x 2 and yet do not satisfy 
the so-called A2-condition. A simple modification of this construction shows the 
extensiveness of  the L~-spaces 'between' any two LP-spaces. This example of ['5] 
is one of the motivations for the following work. The results obtained below 
include such spaces when the measure space (R,/0 is replaced by (G,/~) where G 
is either an arbitrary compact (Hausdorff) group or a locally compact abelian 
group, and/~ is the (normalized) Haar measure on G. These results are obtained 
first by extending a key inequality of  Hausdorff-Young, in the form of  Hardy 
and Littlewood ([2], p. 170), to the present situation and then proving the general 
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statements (Sections 3 and 4). The present treatment illuminates the nature of 
these inequalities. Also their dependence on the Plancherel theorem will be clarified. 
Another extension of the Hausdorff-Young theorem was given in [12] and its 
relation with the present work is discussed in the last section. 

2. Preliminaries. In this section some notation and preliminaries will be set 
forth. They will be used freely later on. Let • and ~F be non-trivial symmetric 
convex functions on the line, vanishing at the origin, and satisfying the Young's 
inequality and the normalization as follows: 

(2.1) xy < O(x) + W(y), O(1) + qJ(1) = 1. 

Such functions are said to be a (normalized) complementary Young's pair. Let 
L®(G,It) be the (sub-) space of (equivalence classes of)measurable scalar functions 
f on a measure space (G,It) for which J®(f) < oo, where 

(2.2) J®(f) = inf k > 0: ~--~-j a I t  < O ( 1 )  . 

It is known that (2.2) is a norm and L®(G,It), or L ® for short, is a Banach (or 
B-) space under this norm (of. [15], Vol. I, p. 174 if, or [5] in which the [inessential 
but convenient] normalization equality of (2.1) was not assumed). The space L ® 
is called an Orlicz space and • a Young's function. Hereafter, in this paper, G 
will be a topological group (either compact or locally compact abelian) and It 
the Haar measure on G. Let .At ea denote the closed subspace of L'determined 
by all bounded functions. Similar definitions hold for L v, ./t 'v where • is com- 
plementary to O. Also • is called a continuous Young's function if it is continuous 
on the line and O(x)> 0 whenever x > 0, (of. [5]). For the usefulness of the 
normalization of (2.1), see [11]. 

A partial ordering between the Young's functions Ox, O2 is needed below. 
It is defined as: O1 < Oz whenever 01(ax) < bO2(x) for Ix[ > Xo and Oz(cx) < 
dOt(x) for Ixl _-< x, where Xo,Xl,a,b,c and d are some fixed positive numbers 
independent of x. [In the case of LP-spaces, one notes that, for all p > 1, 
a = b = c = d = 1, xl > 1 and Xo >= 1.] This ordering implies the following inclu- 
sion relations between the Orlicz spaces (cf. [8], Theorems 4 and 5 on pp. 51-52): 
Let O1 ~_ 02 be continuous. Then the finiteness of the measure # implies 
L*I =L®2and j®l(. ) < ~r®2(. ) and if It({x}) = 6 > 60 > 0 for each point x (so 
L ® becomes the sequence space /o), one has l * l c  1.2 and the corresponding 
nolTaS satisfy [l" 11,®2 -~ fill" [As shown in [8], the converse implications 
also hold for this ordering.] 

LEMMA 2.1. Let (O~,~.3, i = 1,2 be two complementary Young's pairs and 
01 <= ¢~2 be continuous. Then the ordering ~2 <= qtl holds. 
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Proof. First consider the relations near the origin. By definition ¢Pt(ax) 
< b¢2(x),0 < x < x o. Let O(x) = 1/b ¢Pl(ax) <= ¢2(x). Then ~F2(x ) < ~F(x) for 
0 < x =< yoand  for some Yo < ° °  whereqJ i s  complementary to ~. This 
is seen as follows. Using the integral representation of convex functions 
(cf. [5], p. 5), 

I i  <f lp2( t  ) dt (2.3) O(x) = p(t)dt = O2(x), 0 < x ~ Xo, 

where the p's are (unique) increasing functions. If q and q2 are the inverses of 
p and P2 of (2.3) then the point (x, q2(x)) gives equality in Young's inequality 
(2.1) for (I)2,kI/2 (and only inequality for ¢,q~). Hence 

(2.4) O2(q2(x)) q- V2(x) = ]xl q2(x) < (I)(q2(x)) + V(x), 0 < x ~ Yo = q2(Xo). 

(2.3) and (2.4) then imply W2(x) < W(x) for 0 < x <  Yo = q2(xo) at once. But 
W(x) = 1/b Wl(bx/a) which is a consequence of ([5], p. 12). Hence, by a change 
of scale, it follows that W2(ax/b) < 1/btYx(x) for 0 < x ~ ayo/b, proving .the 
first inequality needed for ~2 < ~ .  The second inequality is immediate from 
Theorem 3.1 of ([5], p. 16). This proves the lemma. 

3. Compact groups. A key lemma. In this section an extension of the Hausdorff- 
Young inequality will be established for (arbitrary) compact groups G, and for a 
class of Young's functions (I) =< (I) o where (I)o(X) = ½x 2 . These results are essential 
for all later extensions to the locally compact case. The key step in this work 
is a generalization of the proof of Hardy and Littlewood ([2], p. 170) which 
was given for the circle group and for the L p, 1 < p < 2, spaces. However, the 
result in the present case is considerably more difficult even though in both cases 
the basic idea is to use equality conditions in Htilder's inequalities appropriately. 

Thus let G be a compact (Hausdorff) group• Let {U(a)}~A be (by the Peter- 
Weyl theorem) a complete set of unitary, inequivalent, irreducible (hence finite- 
dimensional) representations of G, where A is an index set. If U s ( a ) =  

• • d ( ~ )  {ux(t,j,a)}~,j = 1 is a matrix representation, relative to some basis where d(~)~ 1 
is the dimension of the representation, then for an feL®(G,p)  let 
f(i,j,:O = fj(x)u~(i,j,ct)dl~(x) where g is the normalized Haar measure on 
G. f is called the Fourier transform o f f  and {us} are orthogonal: i.e., 

I_ux(i,j,a)ux(i',j',a')*dlt(x) = 1, if i = i', j = j ' ,  ct = a ' ,  d(a) 
/ ( i  

and = 0 otherwise. Here 'star' denotes complex conjugation. Let 

d(a) 
(3.1) F 2 ( a , f )  = X 

l , j  = 1 
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k I oo }. 
Then J¢(" ) is a norm for /~,  and if I is continuous then there is a k o -- J®(f) 
in (3.2) such that the inequality is an equality with k = ko on the left. 

THEOREM 3.1. Let (c~,~p) be a continuous Young's complementary pair such 
that (i) • < D o where q~o(x) = ½x 2 , (ii) the derivative ~P' of~P exists and satisfies 
~P'(x) < aoX" for 0 <= x < oo and some r >- 1. I f  G is a compact group and 
fE.g~(G,#) ,  then one has 

(3.3) Jve(F) <= koJ®(f), 

(3.4) Y (f) < kd®(F), 

where ko and kt are some constants depending only on the ordering constants 
of '< '  and ¢P and ao, and where the notations of(3.1) and (3.2) are used in (3.3) 
and (3.4). 

P ~ , g K .  The right (and left) derivative of a convex function exists everywhere 
and they may be different at most at only a countable set of points. Since ~P is 
continuous one may assume ~P' to be continuous everywhere by a redefinition 
(e.g. joining the discontinuities by straight line segments; cf. [15], Vol. I, p. 25) 
and thus the assumption of the first part of (ii) above is made for convenience. 
A more general condition on (@,~P) will be given later in Theorem 3.3 of this 
section. 

The proof of this theorem depends on the following key lemma: 

L ~ t ~ ,  3.2. Let (~,~P) satisfy the conditions of Theorem 3.1. I f  A o c A 
is a finite set define a function fao(" ) by 

dCa) 

(3.5) fao(x) = ~ d(ot) ~ c(i,j,oOux(i,j, ot ), x e G ,  
~' t h o  t , J  - - 1  

where {c(i,j, oO} are some complex constants. Then the inequalities (3.3) and 
(3.4) hold for fao. More explicitly: 

(3.6) Jv(F ao) < I~oJ®(fao), Jv(fao) -~ klJ®(F ao) 

where for • e Ao, F~o(~) vd(~) = ,.,,,j=llc(i,A~)lZ/d(~), and ~l, i = 0,1, are some 

constants depending only on • and the ordering • ~_ ¢Po. 

Proof. Since the computations are somewhat involved, the details will be 
presented here in steps. 

L Let A o : A andfao be as in the lemma. It is clear that fAo(id,g) = c(i,j,g), 
if a~Ao,  and = 0 if ~¢ Ao. So Fao(g) of (3.6) is simply F(~,fao) of (3.1) which 
vanishes for 0~ CAo, and to avoid confusion, set J®(F(.,fao))= S®(fao). In what 
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follows Ao, and ¢ (hence W) are fixed. I f0  ~ f 6 L  ° and ~(i,j,u) are the Fourier 
coefficients o f f ,  let f~o be the corresponding function in (3.5) with these c's. 
Define (as in [2]), 

(3.7) M = M®(Ao) = sup {Sv(fao)/J®(f):f ~ 0), 

(3.8) M' = M'~(Ao) = sup{Jv(fao)/S®(fao):fAo of (3.5) with all c's}. 

It will be proved that M and M' are finite and equal. Since the quantities here 
are ratios of norms, it may and will be assumed Sv(fao) -- 1, for convenience. 
This entails, from the continuity of R s and (3.2) (with ko = 1 there), 

~, vCFCct,f.4o))d2(ct) = V(1). 
~ e A  

The left side is zero if ~ E A - Ao. Since 0 < ~(1) < 1, at least one of the terms 
on the left exceeds [~(1)/d], where d is the (finite) number of elements of Ao. 
If that term corresponds to 0Co ~ Ao, then 

(3.9) ad2(%)iW(1) ] =< F( eo,f o). 

Moreover, from definition in (3.1) one has 

d(~) 

F(o~,:A o) ~ I'd(~)] -1/2 ~ I~(i,j,~)[ 
i , j = l  

<; o If( )l ,f d.(x) 
(3.1o) 

P F d(a) "I I/2 

d(ct)dp(x) 

d(a)f~ [f(x)[dp(x) <-_ d(~)J®(f). 

Here once the Schwarz's inequality and then the HOlder inequality (with J r ( l )  = 1) 
are used. (3.9) and (3.10), with a = %,  yield 

(3.11) 1 < [d(cto)/~_ ~ ~(1) 

Since the right side of (3.11) is independent o f f ,  taking the supremum on the 
left gives M so that M < oo holds. 

II. To show that M' is also finite, actually M' =< M will be proved. For this 
purpose define the function g, from fao of (3.5) as, 

(3.12) g (x )=  ~ ' ( ~  sgn (fAo(X)) • 
\ Jvq~ao) / 
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It follows from ([15], p. 175) that J®(g) = 1, and that there is equality in the 
HiSlder inequality between fAo and g. So from this, the Parseval formula, and 
(3.7) one has 

fO d(~) 
Jv(,fAo) = g(x)f,~(x)dp(x) = ~ d(00 E o~(i,j,0Of.4o(i,j,00 * 

t~ e A o  i , j  = l 

(3.13) < ~, d2(~)F(~,g,to)F(~,fao) < S®(fAo)Sv(g,4o) 
e Ao 

< S~(f~o)MJ®(g) = MS®(.fao ). 

Dividing throughout by S®(f~o) and taking supremum over all c's infao, it follows 
that M' -<_ M < oo. 

III. It will next be shown that M _<_ M' so that M = M'  will follow. For this 
purpose define a function h, from fAo for an 0 ~ f e  L 0, considered in (3.7), 
as follows: 

(3.14) hao(x) = ~, d(oOCF(F(~,fao))~(i,j,oO * ux(i,j,oO, 
~Ao 

where 67(x)= l~P,x (~ ) , fo r  x > 0 w i t h  ~ ( 0 ) = 0 ,  and where k =JT(F(',fAo))>O. 

Then the Parseval formula once again yields 

d(~) 

= ~, d(~) ~, ~(i,j,oO" e(i,j,~) *" ~(F(~,flao) ) 
a eAo  l , j = l  

= ~ d2(~)r2(o~,fao)" ~(F(~,f,4o)) 
:¢ eAo 

~eAo \ r~ ! 

where, in the last line, the equality for I-I61der's inequality and the definition 
J,p(F( ", fXo)) = S~(f.4o) are used. Thus 

S~(fxo) = fof(x)h*o(x)d#(x) ~_ J®(f)" Jy(hx o) ~ J®(f)M'S®(hxo). (3.15) 

However, a simple computation shows that F(~,hAo) = ~ ' ( ~ ) . F r o m  

this it follows, as in (3.12), that S®(hAo) = J®(F(', h.~o)) = 1, so that (3.15) yields 
[sT(fAo)/J®(f)] ~-- M'.  Taking supremum over all f then gives, by (3.7), that 
M ~ M' .  This proves M = M' .  
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IV. It remains to show that M is bounded above. LetfAo be a maximal function 
in (3.7). Since the norms (and ratios) are continuous functions of the c's, such 
functions exist. Thus M --- M '  = [Jv(f.4o)/S®(fAo)]. This implies there is equality 
throughout in (3.13) yielding the following equation for the corresponding g, 
of  (3.12), 

(3.16) Sv(gAo) = M ,  and Jv(fao) = MS¢(fAo). 

Fix this g and fao in what follows. Note also that M is positive. In fact taking 
the constant function f = 1, one notes that, by ([7], p. 159), it is a character 
of  the compact group G. Since J®(1) = 1 and a simple computation shows that 

Sv(f,4) = [¢~-' k { d2(~o)¢(1) ]]]J _t = go >= 1, for some ~o e A so that M => sv(fAo)/J®(f) 

~_ ko _~ 1. 
For the upper bound of M,  consider the Bessel inequality: 

d(~) fG (3.17) S~(gao) = • d2(~) • ]~(i,j, ct)[ 2 =< ]g(x)12dp(x) <= J,r(g2). 
~" e A o  t , j  = l • 

(Here J r ( l )  - I is used in the last H61der's inequality.) But letting ~ l (x)  = ~F(x 2) 
which is a Young's function satisfying ~t' < iF1, and since g is a bounded func- 
tion, one has, if  a 2 = j~(g2),  

fo fo (3.18) W1(1) = ~F(1) = V d/~ = qJ dp. 

Thus Jv~(g) = a. This and (3.17) imply 

(3.19) S2(gAo) ~ Jvl(g).  

Thus far however the hypothesis (ii) on the Young's function ¢ (i.e., that 
W'(x) ~ aox', r > 1) has not been used. This will be utilized now to obtain the 
bound. The whole point here is to find a connection between the norm of g 
and that of  f~o" 

If  a = Jv~(g), (cf. (3.18)) then from the definition of norm it follows that there 
exists a flo > 0 such that 

[ aflo k Jv(fAo) ] J 

(3.20) 

_ \ ~ ]  j d#,  by hypothesis 

=fo . ,[ .  lfAol 

on q' ,  
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, _ l a o  where f l l -  ~ - ~ > 0 ,  and ~ 2 ( x ) =  Wi(x') which is a Young's function such 

that ~t' < ~F 1 < W2. Then (3.20) implies the following crucial inequality. There 
exists a constant l/2 > 0, depending only on ~t'2 and independent of fAo, such 
that 

( fllfao ] > f 1 2 > O .  
dr2 \Jv(fAo) l = 

Since Jr2(" ) is a norm, one has, on recalling the definition of fit above, 

r ' (3.21) l ~ J  >- \ao!  J~, (g)  = flaJ,r,(g), (say). 

Now collecting various estimates from (3.16), (3.19), (3.21) and using the fact 
that u / 2 > ~ x > W > ~ o  (so ¢ o > ¢ > - ¢ 1 ~ _ ¢  2 and l ® ~ c l ® t c l ® = 1 2 = l  v 

I v '  ~ I v~ by Lemma 2.1 and the statement preceding i0 one obtains the follow- 
ing important chain of inequalities: 

rJ-,  o)l r 1 < M = M® = S~,(gao) _~ k2S2(gao) __6 ~ [ ~ - ~ j  

(3.22) 

where S®3(fao) < fl,S®(f~o) for some fl, > 0 depending only on ¢3 and @ was 

do I2r(r+l) used, and where @3 < @2 is complementary to ~ a , ~ a ( x ) = r  + 1 Ix 
~_ ~2(x), for x > 0. Thus (3.22) can be written as 

(3.23) 1 < M~ +1 ~ ~NFo, 

for some k3 > 0, which depends only on @, @t, Ca and the ordering constants. 
But L v3 = L ~ where q = 2r ( r+  1) > 2, so that by (r2], p. 170, when G is the 
circle group and [4], for the general compact group G--(a short independent 
proof of the latter is given below as Proposition 3.4) it follows that M®, =< k,  < oo, 
k ,  being a constant depending only on ao and r. This and (4.23) yield immediately 

(3.24) 1 =< M® < k5 < oo, 

where k5 = (kak4) r/'+ l • 

V. Setting/~o = ks = ix one ontains (3.6) as an immediate consequence of 
(3.7) and (3.8), Step III and (3.24). Note that, since tF2,W z are determined by 
~F, which is complementary to @ all the constants above are determined by @ 
and the ordering @ < @o, and possibly on ao and r.  Thus the proof of the lemma 
is complete. 



Vol. 6, 1968 THE HAUSDORFF-YOUNG THEOREM 141 

Proof  of  Theorem 3.1. The inequalities (3.3) and (3.4) can be deduced from 
those of the lemma using a standard argument. Thus letf~.~®(G), and for 
Ao c A,  let f ,  to be the corresponding function of (3.5) in which c(i,j, ct) - - f ( i , j  ~). 
It is known that such functions as {f~o,A o c A) c J ,  t ® are dense in the latter. 
If {F(u,fAo), ct ~ Ao} is the corresponding function in l v, then a familiar argument 
shows that lim,4o~,t J~(f,4o - f )  = 0 and that limAo=A Jv(FAo) = Jr(F). From this 
and the first of the inequalities of (3.6), the inequality (3.3) follows at once. On 
the other hand, by Fatou's lemma, one has from the second inequality of (3.6) 

Jw(f) < lim Jv(fao) < [il lira J~(F~o ) =/¢tJ®(F), 
Ao=A AocA 

which is (3.4). This accomplishes the proof of Theorem 3.1. 

REMARK. It should be noted that the hypothesis (ii) on ~F'(. ) of Theorem 
3.1 (and Lemma 3.2) was used in Step IV of the proof of Lemma 3.2 in obtaining 
a connection between Jvl(g) and Jv(f.4o). Note that Young's functions obtained 
by constructions similar to that of ([5], pp. 28-29) satisfy this hypothesis while 
it' or its complementary function • (<  ~o) need not satisfy the so-called A2-con- 
dition. The above proof shows that the result holds under the following slightly 
more general hypothesis. 

Condition (B) Let • =< ~o be a Young's function such that (i) ~ '  is con- 
tinuous, (ii) if ~t' is its complementary function and L ®, LVare the Orlicz spaces, 
on (G,p), and fAo is an elementary function (as in (3.5)) on the unit sphere of 
L v, then there exists a tF 2 _~ ~1,  where Wl(x) = W(x2), such that 

Jvl(V'(f,4o)) -<_ kJv~(fAo) 

where k depends only on • and ~2 and the ordering constants, and (iii) there 
exist {¢n} such that ¢n _~ ~ ,  ¢~ --, ¢oo in this ordering with Coo(x) _-< a [xl, 
where the ordering constants near zero are bounded below by a positive number. 

Note that Condition (B) holds in the case of Theorem 3.1, of which it is an 
abstraction, and also by certain suitably defined (I)(x)= xt'lOgk(x), 1 < p < 2, 
andlogk(x) is an iterated logarithm taken k times. This latter is a consequence 
of some work in [12]. Thus the general form of the result can be stated as follows. 

ThEOReM 3.3 Let • be a Young's function and G be a compact group with 
normalized Haar measure # on it. I f  LV(G,I:) is the associated Orlicz space 
and Condition (B) holds for dp, then for every f e,A[® c L ®, the inequalities 
(3.3) and (3.4) hold. 

In fact, with the present hypothesis, (3.22) becomes 

. M®~ 
(3.22)' 1 ~ M = M® -< /¢ ~--~- 
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Thus 1 < M® < ]~/2M~/2, and using the hypothesis on the (I), sequence here one 
gets (for a fixed A 0 = A) by iteration, 

(3.25) M® < k o " ~l /2n(M®n)l /2n.  

But from (3.11) one notes that M®. is bounded above by do = sup{d(ao),% ~Ao} 
< m since W~ l(a)_+ 1 for 0 < a < 1 by normalizations and ~I'~(1)--, I .  Hence 
the above inequality (3.25) shows that as n --, 0% M¢ < k < ~ .  Here ko, ~ are 
constants which depend on (I) and W2 only. This is (3.24), and hence the rest 
of the argument holds verbatum. 

As promised in the proof of Lemma 3.2, a short proof of the Hausdorff-Young 
Theorem, slightly different from [4], will be sketched before considering the locally 
compact case. 

PROPOSITION 3.4. Let f~L°(G,  IO, l < p < 2 ,  and { F ( a , f ) , a ~ A )  be as in 
(3.1). Then (p-1 + q-~ = 1) 

(3.26) ~ F(a,f)qd2(a) <-- [If[Iv, I[f[[~ =< F(~,f)°d2(~) , 
~GA 

where the norms on f are the usual Lebesgue norms. 

Proof. Let Ig(d 2) be the sequence space of qth power summable sequences 
on A, relative to the weights {d2(a),a e A} where d2(ct)> 1 for all ~ e A. Let 
T:LP(G,I~)-+/q(d 2) be an operation defined as Tf  = F ( . , f ) .  Then Tis sublinear, 

i.e. I T(af)l = l al ITfl, and IT(f1 +A)I --< l(vf,)l + I(Tf~)I. Moreover, by 
the Parseval formula, 

(3.27) 11 rfl l l  = Z = Ilflll, 
g ~ A  

and (by definition), 

F "1 llq 

II u l l  = a F(a,f) 
sup~,t d(a) ' q = m.  

However, the computation given in (3.10) implies 

(3.28) II rJll  =< Ilfll,. 
Consequently the Riesz-Thorin theorem for sublinear operators, as extended in 
[1], implies, from (3.27) and (3.28), II TflI, Z Ilfb for 1 < p < 2. This is the 
first of (3.26). The second inequality is obtained by an analogous argument (or 
can be deduced from the first one, of. [15], Vol. 2, p. 103 or [4]), completing 
the proof. 
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4. Locally compact abelian groups. The work of the preceding section enables 
an extension of Theorem 3.1 to locally compact abelian groups. The techniques 
of this section seem inadequate for more general groups. However, the present 
case will be sufficient to an extension of some results of [3] whose work was also 
one of the original reasons for the present paper. 

The main result of this section then can be given as: 

THEOREM 4.1. Let G be a locally compact abelian group and L~(G, IO be 
the Orlicz space on (G,Ig). I f  • satisfies the conditions of either Theorem 3.1 
or of Theorem 3.3, and, f e.A¢~ c L ~, T f  = f is the Fourier transform of f ,  
then 

(4.1) Jv(Tf)  <-_ koJ~(f), 

where k o is a constant depending only on • and the ordering constants in 
< ~o (or those connected with the hypothesis of Theorem 3.3). [As usual, 

T f  is first defined for f ~ M~(G), of compact support and (4.1) is established, 
and then the general case follows by continuity.] 

Proof. Since G is locally compact and abelian, by the structure theorem, 
G is of the form G1 x R p where R p is the Euclidean p-space and G1 is a group 
which contains a compact subgroup H such that GJH is discrete, (cf., [13], 
p. 40). The proof will be established as follows. The work of Section 3 shows 
that (4.1) is valid on H.  Below it will be shown that the result holds if the group 
is either discrete or of the form R p. Since G is (isomorphic to) the direct product 
of these three groups, the general case then can be deduced. Details will be given 
in steps. 

I. I f  G -- R p, then (4.1) holds. To simplify notation the proof of this step 
will be given for p = 1, where R ~ will be written as R. The case p > 1 involves 
no new ideas or difficulties. The method is an extension of that given in [14]. 
Thus let f~d/®(R) ,  and let f have compact support. If  ~ > 1 and 1 > 1 are 
numbers let n = [~x] - 1 where [a] denotes the integral part of the real number a. 

: J +  1/,~ " "  If  as .fj/;, ~f(x)dx, set g,,(x) = ~,]=_,,aje "~. Thencons ide r ingGx=( -n t J r2  ] 
and d#(x) = dx/27rt as its (normalized) Haar measure, one can apply the results 
of Section 3 to gn(" ) to get [cf. (3.6) or (3.4)] 

(4.2) Jv(gn) --< klJo(fn) 

where, in this case, F ,  = { a s , - n  __<j < n) and kl depends only on ~ .  On the 
other hand by (two applications of) Jensen's inequality 

~.~(a s) < ~(~a s) = • ,l.|l~ f(x) dx ~ ,~ ~(J') dx, 
dji~ 

so that, on adding the first and last terms, one has 
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(4.3) ~ t~(a#) ~_ (f(x))dx. 
J =  --n 

Replacing f by f/k, k > 0, in (4.3) and remembering the definition of norm in 
Orlicz spaces (see (2.2)) it follows that 

(4.4) J®(V,) <= J . ( f  xa) 

where Za is the indicator function of A = (-ct ,~).  Hence (4.2) and (4.4) yield 
for any ,~ => i, 

(4.5) Jv(g,) -~ kxJ®(fxa). 

But as n ~ o o  (i.e. A~  oo) g,(x)--,f, ael'Xf(t)dt uniformly in any finite inter- 
val of R, (cf. e.g. [14], p. 283) and using the Fatou property of the norm Jr ("  ) 
(and the continuity of ~It), one easily obtains 

(4.6) J" (fA e"'f(t)dt) < k,J~fxa). 

1I_ If F(x, a) = ~ . , e~'~f(t)dt, then (4.6) implies for any b > a > 0, the following 

inequality: 

(4.7) Jr(F(' ,  b) - F ( . ,  a)) _-< kl[J®(fX(-~,-°)) + J®(fX(o,b))]. 

Since f s . .~(R) ,  one can take the limit as b ~ oo, and then a --~ m ,  inside the 
norm (cf., e.g., [5], p. 87 or [8], p. 55 about the fact that in . ,~(R) the norm 
is absolutely continuous--which is used here), so that F ( . ,  a) converges in norm 
J r ( ' )  to F and 

(4.8) Jr(F) _-< klJ®(jO 

obtains. Clearly F = f = Tf here. Thus (4.1) holds for a dense set of functions 
f (i.e., those with compact supports) in .ht~(R) and hence T has a unique norm 
preserving extension to all of.~c~(R). Hence (4.1) holds for all f i n  .~d~(R), as 
desired. 

II. If G = Z p, the discrete group, then (4.1) holds. As before the considera- 
tion of the ease p = 1 (Z x will be written as Z) suffices. Then ~, the dual group, 
is compact, and with the appropriate normalizations of the corresponding Haar 
measures consider fe..lt~(Z), the latter space is the closed subspace of /0  deter- 
mined by functions (i.e., sequences) which have only finitely many non-zero 
values. The proof again is similar to that of Step I above, but is simpler. Thus 

oo t n x  f(x) = ]~.=_~f(n)e , the convergence being uniform for x Ed  and 
]~=_~(f(n)) < oo. Let g.(x)= ]~=_. f(j)e 11~ be defined on d .  Then (3.4) 
implies 
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(4.9) Jv(gn) < k2J¢(Fn) ( < k2J÷(f)), 

where Fn = {f(j), - n  < j <= n}, and k2 depends only on O. Since gn(x)~f(x) 
as n -~ oo, uniformly, one has from (4.9), 

(4.10) J r ( f )  < l i ra  Jv(g,) < k2J®(f), 
tl--~ OO 

since F, is also the restriction of f to a finite set of points in Z. Thus (4.1) holds 
in this case also. 

III. The general case is deduced as follows. It has been proved now that, 
if G is either compact (Theorems 3.1 and 3.3), or (ii) R"or  (iii) Z Pthen (4.1) is 
true. But by the structure theory, a locally compact abelian G is topologically 
isomorphic with the product of the above three groups. Iffe~'~(G) and f has 
compact support, and if A1, A2 and Aa are the character groups of R', Z p 
and H,  then under appropriate identifications (cf. [13], p. 55) these are subgroups 
of ~ and their union is ~ .  Moreover, (cf. [13], Theorem 2.7.4) the map 
~¢°(G) ~..¢f*(G/L), where L is a closed subgroup of G (any one of the three 
above) defined by f - ~  F for f ~ ' * ( G ) ,  and F e~O(G/L) such that 

F(O = fLf(xy)d#L(Y) 
where x E G and ~ is the coset of L containing x, (and/~L is the normalized Haar 
measure on L) one has P(~) = f(~) for ~ ~ A, the character group of L. It follows 
from this, that P~ = fA,, i = 1,2, 3 (f^ is f restricted to A) and that 

(4.11) Sv(~¢,) -<_ k,J®(f), i = 1, 2, 3. 

If ko = 3max(kl,k2,ka) where k s are the constants that depend only on 
and the ordering constants, it follows from the definition of the norm J r ( ' )  
(see (2.2)) that (4.11) implies (4.1) with the above ko. Thus the proof of the 
theorem is complete. 

Some further inequalities obtainable from, and complementary to, those of 
Theorem 4.1 and of Section 3 together with some related remarks will now 
be given in the next (and final) section. 

5. Related inequalities and remarks. Using the results of the last two sections 
a new set of inequalities of the Hausdorff-Young type can be obtained by inter- 
polation as shown in the next result. It will then be illuminating to compare 
these with other (and classical) work. 

Let ( ~ , ~ ) ,  i = 1, 2 be two pairs of Young's complementary functions and 
0 _< s < 1. Let ¢~ and ~F, be convex functions which are respectively inverse to 

(5 .1)  = ' .  
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That (~,,tFs) is a pair of convex functions satisfying the Young's inequality 
(2.1), though not necessarily complementary in the sense of Young, was pointed 
out in ([91, Lemmas 2 and 4). 

THEOREM 5.1. Let ¢P be a continuous Young's function with ~P(x) > 0 for 
x > O. I f  G is a locally compact abelian group and T denotes the operation 
of Fourier transform on .l¢'e(G), then T is a densely defined one-to-one closed 
linear operator on .lge(G) into eg¢V(G) where ~F is the complmentary Young's 
function to ~P. I f  for a pair ~ = ~ ,  i =  1,2 the domain of T is all of 
de~'(G), i = 1,2, then T: .I#®'(G) .o M'r'(d), 0 < s < 1 is a bounded operator 
and moreover 

(5.2) J,r,(rf) ~_ ks,®,(f), f~ . / l~s ,  

where (@~,~F,) are defined by (5.1) and where k,.®, is a constant depending only 
on s and t~ 1 and ¢P2, the norms J®(" ) being those defined in (2.2). [As usual 
d always stands for the dual group of G.] 

R~MARKS 1. The result of  Theorem 4.1 shows that there exist @~ < @o, 
in plentitude, which satisfy the hypothesis of the theorem preceding the inequality 
(5.2). 

2. The first part of  this result and the classical Banach's Open Mapping 
Theorem, imply that the range of T is either the whole of. / t 'v(~) or it is of  the 
first category, the latter is a dense subspace if • is also continuous with ~'(x) > 0 
for x > 0. This result is well-known for the Lebesgue case (cf. [3a"1). Using the 
same technique of 13a], it can be shown that if @ < ~o ,  only the second alter- 
native occurs here also. 

Proof. Let P ~ L°°(G) be the set of  positive definite functions and let 
f ~  P r~ J/®(G), of  compact support. It then is a consequence of  the inversion 
theorem (see, e.g. [7"1, p. 143) t h a t f i s  also a bounded integrable function on G, 
and that Tis one-to-one. Actuallyf~.,Ct'~'(G~). This is immediate if ~F is continuous. 
If  W is discontinuous and is of the form W(t) = 0 for 0 < [ t I < to < oo and 
= + oo for I tl > to > 0, then it is seen that ,/t 'v(d) = LV(d) = L~°(d) and the 
result holds again. Finally if ~ ( x ) >  0 for 0 < I x  I <  t l ,  and ~ ( x ) =  oo for 
Ixl > so that LV(t~) ~ L~°(d), then define qT(x) = so that ff~ is a 
(not necessarily convex) bounded continuous function on 0 < I x[ < t~ - fi (6 > 0), 
and ~ ( x ) =  oo for I xl > t~ ÷ Then for some ~ > 0, 

where a is chosen such that ~lj~[(:~) _-< t x - 6, a.e., and ~ is the Haar measure 
on ~ .  Thus if ~ is the linear span of  all such f ,  then ~ c .£e~(G) and 
T(~)  c ~'(G~). Since step functions are dense in .#~(G) and since @ is con- 
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tinuous, an argument entirely analogous to that in (I-7], p. 142) shows that every 
step function can be approximated by elements of P n ~¢/¢(G), it;follows that 

is also dense in ~ '°(G).  
To show that T is closed, let { f , } c ~  and g , =  Tf, be such that 

d®(f . - f )  ~ O, J r ( g , -  g)-o O, and let h be in ..¢t'®(d)n P,  with compact 
support, using an obvious notation. For the proof here the case that v//v = L °° 
may be excluded since then the result is known to be true (L ¢ = .~'* = L t holds 
in that case and the norms are equivalent, so T is actually bounded). So in the 
remaining cases an argument of the preceding section shows that such h are 
dense in J/®(d). Hence 

f¢  g(x) = | t.,  (x, fc)*f~(x) h(~) dft(~) d#(x) 
[, t "  

h(~) d,O( ~ ) lira 
n"*oodGdG 

= lim f ~(x)f,(x)d#(x) = f~fz(x)f(x)d#(x) 
n~oodG ,. 

= ~ h(.~)f(.~)dft(.~). 

The unexplained notation is self-evident and follows ([7J or [13]). Here the 
interchange of the limit and the order of integral are justified by the facts that 
the hypothesis on g,h and f ,  implies that the integrable sequence {f~} is actually 
Cauchy in LI(G,#), fte..4lV(G), and Fubini and Lebesgue-Vita/i theorems arc 
applicable. Thus f~(g(fO- (Tf)(~))h(~)dp(~)= 0. Since such h are dense in 
Jt'O(G),it follows that g - Tf = 0, a.e. ,f~ ~ ,  and Tis closed. 

Fioally, if the domain of T is ..¢/®'(G), then by the Closed Graph Theorem, 
Tis bounded: T: .# t '~ ' (G)~ 'v ' (~) ,  i = 1,2 is bounded. Thus Jv,(Tf) <= kfl¢(f), 

f~Ct'®'(G), i = 1,2. Now if ((I)~, tes) is the pair defined by (5. I), then the inequality 
(5.2) is a consequence of ([9], Theorem 2) with k~.,, = ~lvl-st',~2~. This completes 
the proof of the theorem. 

In the above result the fact that G is abelian was used crucially even in the 
very definition of the Fourier transform. However, in Section 3, G is an arbitrary 
but compact group, and the Fourier transform is defined for everyf~ if(G) = LI(G) 
It is then natural to examine the corresponding inequality in this case. The first 
part of the above result need not be considered here. The inequality may be stated 
as follows: 

PROPOSITION 5.2. Let G be any compact group and ((1)i,~/), i = 1,2 be 
Young's complementary functions such that T: d/C'(G)~../t'v'((~), i =  1,2 
is defined everywhere, where Tf = F(. , f ) ,  is the sublinear operator defined 
by (3.1). Then 
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(5.3) J~, (F( " , f))  < ks,®,(f), f e~lg°"(G), 0 < s <- 1, 

where ks,., is a constant which depends only on s and ~ ,  the pair ~ , W s  being 
given by (5.1). 

The proof is similar to that of Proposition 3.4. Briefly, the hypothesis implies 
J,r,(F(' , f)) < kiJ, ,( f) ,  for f~,/C®'(G), i = 1,2. Then to obtain (5.3) one needs 
an extension of ([9], Theorem 2) for sublinear operators. Even though this is 
not entirely simple, the corresponding result does hold and this extension yields 
(5.3). [The needed extension of the interpolation theorem has been worked out 
recently by Mr. W. T. Kraynek in connection with his thesis at Carnegie.] 

So~xE REMARKS. (a) The inequalities (5.2) and (5.3) cannot be obtained from 
the classical Hausdorff-Young inequality (3.26). This is because the Riesz-Thorin 
convexity theorem gives only the Lebesgue spaces L v, 1 < p < 2, and its extension 
([9], Theorem 2) can be used to give new inequalities (5.2) and (5.3) only if an 
inequality of the Hausdorff-Young type (namely (4.1) or (3.3), (3.4)) for/P-spaces 
is available. Thus it gives new inequalities, as here, whenever the L ® so considered 
is not an LP-space. It should also be remarked that (5.2) and (5.3) yield new 
inequalities even if only ((I)2,1~/2) is a Young's pair and (~l,qJl) gives a Lebesgue 
pair. The latter, for instance, is the case if ~Fl(x) = 0 for 0 < [ x[ < t l ,  and = oo 
for x > tl > 0. Since then ~t'v~(~) = LV'(d) = L~°(G "3 and moreover it is seen 
that Ilfll  z t l J ~ ,  f~L°~(~) This implies (by the closed graph theorem) 
that the norms in L v~ and L °~ are equivalent and that L*I(G) = J/®I(G) = Lt(G), 
and the norms here are also equivalent. Since in this case T: L®~(G) --, LYe(d) is 
a bounded operator the hypothesis of the theorem for (~I,V~)is automatically 
satisfied. It should be emphasized that, for Theorems 3.1 and 4.1, it is the method 
of the classical Hausdorff-Hardy-Littlewood proofs, which does not use Plan- 
cherel's Theorem, that is seen to be important in this extension. 

(b) An extension of Theorem 4.1 to locally compact unimodular groups can 
clearly be considered. However, the present methods do not seem to work. It 
appears that considerable preliminary work (generalizing several results of 
[6]) is needed even for a precise statement here, and this has yet to be done. 
The need for inequalities of the type (5.2), and (5.3), was noted in applications 
in the past (cf., e.g., [10], Theorem 5). Moreover, most of the work presented 
here is useful in extending the work of [3]. 

(c) In an unpublished Ph.D. thesis, written under Professor A. Zygmtmd at 
the University of Chicago, W. J. Riordan has proved in 1957, a result similar 
to that of Theorem 4.1 (with G = R there) if O(x) = Ix [PL(x), 1 < p < 2, where 
L(. ) is a product of the (a finite number of iterates of) logarithmic functions 
such that ~ ( .  ) is a Young's function (el. [12]), then ~(x) = [x[~L~(x) where 

[ p - i  + q-1 = 1 and Ll(x) -- L for large x is defined such that ~ ( .  ) 
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is a Young's function. (~, W) need not be complementary here [as is the 
case with (~,~Fs) of (5.1)], unlike that of Theorem 4.1. It seems likely, however, 
that the complementary function of • and the above ~ define the same Orlicz 
space with equivalent norms (as is the case with (~s,W~), cf. 1-9], Lemma 4), 
though this is not immediate from Riordan's work. His proof is based on an 
interesting extension of the Marcinkiewicz's interpolation theorem for certain 
Orlicz spaces which was first established in the thesis and from which an inequality 
of the type (4.1) was deduced. Thus Riordan's result and Theorem 4.1 may 
complement each other in some cases and may coincide in others whenever 
they are comparable. 

In conclusion, I would like to thank Professor Zygmund for drawing my at- 
tention to Riordan's work, and for helpful comments on an earlier draft of this 
paper. 
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